ICT CoC 멤버가 자유롭게 소통할 수 있는 커뮤니티입니다.
ICT CoC 멤버가 자유롭게
소통할 수 있는 커뮤니티입니다.
제목 | “데이터 과학자 없는 머신러닝” AutoML의 이해 |
---|---|
날짜 | 2019-08-29 |
첨부파일 | 없음 |
머신러닝(전통적인 머신러닝과 딥러닝 모두) 사용을 가로막는 두 가지 가장 큰 장애물은 기술력과 컴퓨팅 자원이다. 여기서 컴퓨팅 자원 문제는 가속 하드웨어(고성능 GPU를 탑재한 컴퓨터 등)를 구매하거나 클라우드의 컴퓨팅 자원(예를 들어 GPU, TPU, FPGA가 연결된 인스턴스)를 임대하는 방식으로, 즉 돈을 들여서 해결할 수 있다. 그러나 기술력 문제를 해결하기는 어렵다. 데이터 과학자는 인건비가 상당히 비싼 경우가 많고, 그나마도 찾기 힘들다. 구글은 많은 자체 직원들에게 텐서플로우(TensorFlow) 프레임워크를 교육시켰지만, 일반 기업은 교육은 커녕 스스로 머신러닝 및 딥러닝 모델을 구축할 만큼의 기술력 있는 인력도 갖추지 못한 경우가 많다. 자동화된 머신러닝, 즉 AutoML은 머신러닝과 딥러닝 모델을 구축하는 데 있어 기술력을 갖춘 데이터 과학자란 필요조건을 제거하는 데 목적을 둔다. AutoML 시스템을 사용하면 레이블링된 학습 데이터를 입력으로 제공하고 최적화된 모델을 출력으로 받을 수 있다. |